中科白癜风微博 http://www.zherpaint.com/m/导读:机械式激光雷达、固态激光雷达、MEMS激光雷达、Flash面阵激光雷达、OPA固态激光雷达、混合固态激光雷达...如此多种激光雷达,你了解多少?激光雷达是一种通过发射激光束探测目标的位置、速度等特征量的雷达系统——激光波段位于0.5μm-10μm,以光电探测器为接收器件,以光学望远镜为天线。激光雷达因为激光波长短,准直性高,使得激光雷达性能优异:角分辨率和距离分辨率高、抗干扰能力强、能获得目标多种图像信息(深度、反射率等)、体积小、质量轻。目前激光雷达广泛应用在测绘、气象监测、安防、自动驾驶等领域。且大部分人认为,激光雷达是自动驾驶不可或缺的关键传感器。目前市面上可见的车载激光雷达,基本都是机械式,其典型特征即为拥有机械部件,会旋转,比如Velodyne著名的大花盆HDL64。当然也有混合固态激光雷达,即外面不转了,但里面仍有激光发射器进行旋转的种类。但除了这两种激光雷达外,因使用的技术不同,还分为多种激光雷达。下面我们一起来全面了解激光雷达的分类。根据结构,激光雷达分为机械式激光雷达、固态激光雷达和混合固态激光雷达。 机械式激光雷达机械激光雷达,是指其发射系统和接收系统存在宏观意义上的转动,也就是通过不断旋转发射头,将速度更快、发射更准的激光从“线”变成“面”,并在竖直方向上排布多束激光,形成多个面,达到动态扫描并动态接收信息的目的。以Velodyne生产的第一代机械激光雷达(HDL-64E)为例,竖直排列的激光发射器呈不同角度向外发射,实现垂直角度的覆盖,同时在高速旋转的马达壳体带动下,实现水平角度度的全覆盖。因此,HDL-64E在汽车行驶过程中,就一直处于度旋转状态中。因为带有机械旋转机构,所以机械激光雷达外表上最大的特点就是自己会转,个头较大。如今机械激光雷达技术相对成熟,但价格昂贵,暂时给主机厂量产的可能性较低;同时存在光路调试、装配复杂,生产周期漫长,机械旋转部件在行车环境下的可靠性不高,难以符合车规的严苛要求...等不足。当前的激光雷达战场,机械旋转式方案占据着绝对的统治地位,目前除了美国Quanergy以外,各大主流的激光雷达供应商都是以机械旋转式的产品线为主,并以此为基础不断推进更高线数产品的迭代。比如做激光雷达起步最早、做的最大的Velodyne,主攻的就是机械激光雷达,其机械激光雷达目前可做到线,性能非常强悍。混合固态激光雷达年1月的CES消费电子展会上,Velodyne展示了“混合固态超级冰球”(Solid-StateHybridUltraPuckAuto),由此引入了混合固态激光雷达的概念。机械式激光雷达在工作时发射系统和接收系统会一直度地旋转,而混合固态激光雷达工作时,单从外观上是看不到旋转的,巧妙之处是将机械旋转部件做得更加小巧并深深地隐藏在外壳之中。业内普遍认为,混合固态激光雷达指用半导体“微动”器件(如MEMS扫描镜)来代替宏观机械式扫描器,在微观尺度上实现雷达发射端的激光扫描方式。MEMS扫描镜是一种硅基半导体元器件,属于固态电子元件;但是MEMS扫描镜并不“安分”,内部集成了“可动”的微型镜面;由此可见MEMS扫描镜兼具“固态”和“运动”两种属性,故称为“混合固态”。对于激光雷达来说,MEMS最大的价值在于:原本为了机械式激光雷达实现扫描,必须使激光发射器转动。而MEMS微机电系统可以直接在硅基芯片上集成体积十分精巧的微振镜,由可以旋转的微振镜来反射激光器的光线,从而实现扫描。这样一来,激光雷达本身不用再大幅度地进行旋转,可以有效降低整个系统在行车环境出现问题的几率。另外,主要部件运用芯片工艺生产之后,量产能力也得以大幅度提高,有利于降低激光雷达的成本,可以从上千乃至上万美元降低到数百美元。老牌激光公司日本先锋,利用原本用于扫描激光影碟的光学头,来生产MEMS激光雷达。该公司曾表示“当订单达到万,先锋便可以把价格控制在美元以下,预计会在年开始量产。”固态激光雷达:OPA与Flash固态激光雷达相比于机械式激光雷达,固态激光雷达结构上最大的特点就是没有了旋转部件,个头相对较小。固态激光雷达的优点包括了:数据采集速度快,分辨率高,对于温度和振动的适应性强;通过波束控制,探测点(点云)可以任意分布,例如在高速公路主要扫描前方远处,对于侧面稀疏扫描但并不完全忽略,在十字路口加强侧面扫描。而只能匀速旋转的机械式激光雷达是无法执行这种精细操作的。从使用的技术上,固态激光雷达分为OPA固态激光雷达和Flash固态激光雷达。OPA固态激光雷达OPA(opticalphasedarray)光学相控阵技术。对军事有所了解的读者,应该会知道相控阵雷达,美海军宙斯盾舰上那一块蜂窝状的“板子”就是它。而光学相控阵使用的即是原理相同的技术。OPA运用相干原理(类似的是两圈水波相互叠加后,有的方向会相互抵消,有的会相互增强),采用多个光源组成阵列,通过控制各光源发光时间差,合成具有特定方向的主光束。然后再加以控制,主光束便可以实现对不同方向的扫描。相对于MEMS,这一技术的电子化更加彻底,它完全取消了机械结构,通过调节发射阵列中每个发射单元的相位差来改变激光的出射角度。因为没有任何机械结构,自然也没有旋转。所以相比传统机械式雷达,OPA固态激光雷达有扫描速度快、精度高、可控性好、体积小等优点。但也易形成旁瓣,影响光束作用距离和角分辨率,同时生产难度高。比如Quanergy研发的“固态”SolidState激光雷达,就是OPA激光雷达,其满足了激光雷达小型化的大趋势,整个尺寸只有90mmx60mmx60mm。用到的核心的技术有光学相控阵列OpticalPhasedArray、光学集成电路PhotonicIC、远场辐射方向图FarFieldRadiationPattern,完全没有机械固件。 Flash固态激光雷达Flash原本的意思为快闪。而Flash激光雷达的原理也是快闪,不像MEMS或OPA的方案会去进行扫描,而是短时间直接发射出一大片覆盖探测区域的激光,再以高度灵敏的接收器,来完成对环境周围图像的绘制。因此,Flash固态激光雷达属于非扫描式雷达,发射面阵光,是以2维或3维图像为重点输出内容的激光雷达。某种意义上,它有些类似于黑夜中的照相机,光源由自己主动发出。Flash固态雷达的一大优势是它能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦。不过,这种方式也有自己的缺陷,比如探测距离较近。卡耐基梅隆大学机器人专家SanjivSingh认为:“像素越大,你要处理的信号就越多。将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。”这意味着Flash固态激光雷达没有“远视眼”,在实际使用中不适合远程探测,而业内专家坚信,全自动驾驶汽车上搭载的激光雷达至少一眼就得看到到米外的物体。其实Flash固态激光雷达的成本还是相对低,但基于3DFlash技术的固态激光雷达,在技术的可靠性方面还存在问题。结语:相比于机械激光雷达,MEMS激光雷达体积更小,价格更低廉,更适合大规模应用;同时相比于OPA和Flash,MEMS在技术上更容易实现。因此,MEMS被各大主机厂商一致看好,近些年入局MEMS激光雷达研究的企业很多。业内人士认为,未来,中远距离激光雷达将是MEMS固态的天下。MEMS更容易做到远距离,而OPA与Flash想达到米距离还有大量的路要走,OPA也因为技术暂不成熟,短期内估计不会有落地的产品出现。而且,MEMS激光雷达的芯片化特征,使得它具有车规级、千元级、易量产的基因,因此这个方案将最先被OEM接受,成为第一代L3以上自动驾驶量产车的感知配件。
转载请注明:
http://www.aideyishus.com/lkyy/6693.html